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We prove that if both [Pn(x)]�
n=0 and [{rPn(x)]�

n=r are orthogonal polynomials
for any fixed integer r�1, then [Pn(x)]�

n=0 must be discrete classical orthogonal
polynomials. This result is a discrete version of the classical Hahn's theorem stating
that if both [Pn(x)]�

n=0 and [(d�dx)r Pn(x)]�
n=r are orthogonal polynomials, then

[Pn(x)]�
n=0 are classical orthogonal polynomials. We also obtain several other

characterizations of discrete classical orthogonal polynomials. � 1997 Academic Press

1. INTRODUCTION

Consider a sequence of polynomials that arise as eigenfunctions of the
second-order difference equation of hypergeometric type

L2[ y](x)=l2(x) 2{y(x)+l1(x) 2y(x)=*n y(x), (1.1)

where l2(x)=l22x2+l21 x+l20 (�0) and l1(x)=l11x+l10 are polyno-
mials independent of n and

*n=n(n&1) l22+nl11 , n=0, 1, 2, ... . (1.2)

Orthogonal polynomials satisfying (1.1) are known as discrete classical
orthogonal polynomials and they are well studied [6, 13, 15, 16, 19, 23].
Like classical orthogonal polynomials satisfying second-order differential
equations of hypergeometric type, discrete classical orthogonal polynomials
can be characterized in many different ways (see [1�5, 7, 8, 10, 14, 18]).
In particular, it is well known that classical orthogonal polynomials
(respectively, discrete classical orthogonal polynomials) are the only
orthogonal polynomials [Pn(x)]�

n=0 such that [P$n(x)]�
n=1 (respectively,

[{Pn(x)]�
n=1) is also orthogonal (see [4, 11, 12, 14, 17, 21, 22]). Later,

Hahn [8] (see also [7, 9]) showed that the only orthogonal polynomials
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whose derivatives of any fixed order are also orthogonal are the classical
orthogonal polynomials.

In this work, we obtain a discrete version of Hahn's theorem by showing
that discrete classical orthogonal polynomials are the only orthogonal
polynomials [Pn(x)]�

n=0 such that [{rPn(x)]�
n=r (or [2rPn(x)]�

n=r) is
quasi-orthogonal (see Definition 2.1) for any fixed integer r�1.

2. PRELIMINARIES

All polynomials in this work are assumed to be real polynomials of a
real variable x and we let P be the space of all polynomials. We denote the
degree of a polynomial �(x) by deg(�) with the convention that
deg(0)=&1.

By a polynomial system (PS), we mean a sequence of polynomials
[Pn(x)]�

n=0 with deg(Pn)=n, n�0. We call any linear functional _ on P

a moment functional and denote its action on a polynomial �(x) by
(_, �). In particular, we call [(_, xn)]�

n=0 the moments of _.
Any PS [Pn(x)]�

n=0 determines a unique sequence of moment functionals
[un]�

n=0 , called the dual sequence of [Pn(x)]�
n=0 (cf. [18]), by the conditions

(un , Pm)=$mn (m and n�0), (2.1)

where $mn is the Kronecker delta function. In particular, we call u0 the
canonical moment functional of [Pn(x)]�

n=0.

Definition 2.1. We call a PS [Pn(x)]�
n=0 a quasi-orthogonal

polynomial system (QOPS) (respectively, an orthogonal polynomial
system (OPS)) if there is a non-zero moment functional _ such that

(_, PmPn)=Kn$mn (m and n�0), (2.2)

where Kn are real (respectively, non-zero real) constants. In this case, we
say that [Pn(x)]�

n=0 is a QOPS or an OPS relative to _ and call _ an
orthogonalizing moment functional of [Pn(x)]�

n=0 .

Note that if [Pn(x)]�
n=0 is a QOPS relative to _, then (_, P2

0) {0 but
(_, P2

n) for n�1 may or may not be 0 and _ must be a non-zero constant
multiple of the canonical moment functional u0 of the PS [Pn(x)]�

n=0.
We say that a moment functional _ is regular (respectively, positive-

definite) if its moments [(_, xn)]�
n=0 satisfy the Hamburger condition

2n(_) :=det[(_, xi+ j)]n
i, j=0 {0 (respectively, 2n(_)>0) (2.3)
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for every n�0. It is well known (see Chapter 1 in Chihara [5]) that a
moment functional _ is regular if and only if there is an OPS relative to _.

For a moment functional _ and a polynomial ,(x), we let 2_, {_ and
,_, be the moment functionals defined by

(2_, �) =&(_, {�) , ({_, �)=&(_, 2�) ,

(,_, �) =(_, ,�) (� # P),

where 2�(x)=�(x+1)&�(x) and {�(x)=�(x)&�(x&1). Then we
have the following Leibniz rule:

2(,_)=,(x+1) 2_+2(,) _, {(,_)=,(x&1) {_+{(,) _, (2.4)

and 2_=0 (or {_=0) if and only if _=0.

Lemma 2.1 [14]. Let _ be a regular moment functional and [Pn(x)]�
n=0

an OPS relative to _. Then we have

(i) for any polynomial ,(x), ,(x) _=0 if and only if ,(x)#0.

(ii) for any moment functional { ({0) and any integer k�0,
({, Pn) =0 for n>k if and only if {=�(x) _ for some polynomial �(x) of
degree �k.

In this case, deg(�)=k0 (0�k0�k) is the largest integer such that
({, Pn) =0 for n>k0 and ({, Pk0

){0.

Lemma 2.2 [18]. Let [Pn(x)]�
n=0 be a PS and [un]�

n=0 the dual
sequence of [Pn(x)]�

n=0. Then for any moment functional { and any integer
k�0, the following two statements are equivalent.

(i) ({, Pk){0 and ({, Pn)=0 for n>k.

(ii) There exist real constants [ej]k
j=0 such that ek {0 and

{= :
k

j=0

ejuj . (2.5)

Lemma 2.3. Let [Pn(x)]�
n=0 be a PS and [un]�

n=0 and [vn]�
n=0 the dual

sequences of PS 's [Pn(x)]�
n=0 and [Qn(x) :=(1�(n+1)) {Pn+1(x)]�

n=0 ,
respectively. Then, we have

2vn=&(n+1) un+1 (n�0). (2.6)

Proof. Since (2vn , Pm)=&(vn , {Pm)=&m(vn , Qm&1)=&m$n, m&1

for n and m�0 (Q&1(x)#0), we have (2.6) by Lemma 2.2. K
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Lemma 2.4 [18]. Let [Pn(x)]�
n=0 be a PS and [un]�

n=0 the dual
sequence of [Pn(x)]�

n=0. Then the following two statements are equivalent.

(i) [Pn(x)]�
n=0 is an OPS.

(ii) For each n�0, there is a non-zero real constant Cn such that

un=Cn Pn(x) u0 . (2.7)

Note that Lemma 2.1 is an easy consequence of Lemma 2.3 and
Lemma 2.4.

Definition 2.2. An OPS [Pn(x)]�
n=0 is called a discrete classical OPS

if for each n�0, Pn(x) satisfies the second order difference equation (1.1).

Proposition 2.5. Let [Pn(x)]�
n=0 be an OPS relative to a regular

moment functional _. Then, the following statements are all equivalent.

(i) [Pn(x)]�
n=0 is discrete classical OPS relative to _.

(ii) [{Pn(x)]�
n=1 is an OPS.

(iii) [{Pn(x)]�
n=1 is a QOPS.

(iv) There are polynomials l2(x) (�0) of degree �2 and l1(x) of
degree 1 such that _ satisfies

2(l2_)=l1 _. (2.8)

Proof. It is well known ([6, 19]) that (i) is equivalent to (iv).

(i) O (ii): Assume that [Pn(x)]�
n=0 is an OPS relative to _ satisfying

the difference equation (1.1). At first we prove that *n {0 for all n�1.
Assume *n=0 for some n�1. Then we have by (2.8)

0=*nPn_=[l22{Pn+l12Pn] _

=l2[2{Pn] _+2Pn2(l2_)

=2[({Pn) l2_]

so that ({Pn(x)) l2(x) _=0. Hence ({Pn(x)) l2#0 by Lemma 2.1(i) and
so {Pn(x)#0 since l2(x)�0, which implies n=0 contradicting the fact
that n�1. Since (i) is equivalent to (iv), we have

*n Pn_=l22{Pn _+l1 2Pn _=2[({Pn) l2 _].

Hence,

(l2 _, {Pm+1{Pn+1)=&(2[({Pn+1) l2 _], Pm+1)

=&*n+1(_, Pm+1Pn+1).
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Therefore, [{Pn+1(x)]�
n=0 is an OPS relative to l2(x) _ since *n+1 {0,

n�0 and [Pn(x)]�
n=0 is an OPS relative to _.

Since (ii) implies (iii) by definition, it suffices to show that (iii) implies
(iv).

(iii) O (iv): Assume that [{Pn+1(x)]�
n=0 is a QOPS relative to {

(�0) so that

({, {Pm+1{Pn+1)=0 for m{n, m and n�0. (2.9)

Set m=0 in (2.9). Then we have for every n>0

0=({, {P1{Pn+1)=&{P1(2{, Pn+1)

so that (2{, Pn+1(x))=0. Hence Lemma 2.1(ii) implies

2{=l1(x) _ (2.10)

for some polynomial l1(x) of degree �1. Set m=1 in (2.9). Then for every
n>1, we have

0=({, {P2{Pn+1) =&(2[({P2) {], Pn+1)

=&([2{P2] {, Pn+1) &(2P22{, Pn+1)

=&[2{P2]({, Pn+1) &(2{, [2P2] Pn+1)

=&[2{P2]({, Pn+1) &(_, l1[2P2] Pn+1) .

Since (_, l1[2P2] Pn+1)=0 for n>1 and {2P2(x)�0, ({, Pn+1(x)) =0
for n>1 so that by Lemma 2.1(ii),

{=l2(x) _ (2.11)

for some polynomial l2(x) of degree �2. The equation (2.8) follows from
(2.10) and (2.11) and l1(x)�0, l2(x)�0 since {{0. If l1(x)=c, c a
non-zero constant, then

(_, 1)=
1
c

(2(l2_), 1)=0,

which is impossible since _ is regular. Hence, deg(l1)=1. K

Remark 2.1. In fact, Hahn ([9]) proved the equivalence of the
statements (i) and (ii) in Proposition 2.5 in more general setting. He first
introduced a linear operator

Lf (x)=
f (qx+w)& f (x)

(q&1) x+w
,

160 KWON, LEE, AND PARK



File: 640J 302806 . By:DS . Date:21:04:97 . Time:08:20 LOP8M. V8.0. Page 01:01
Codes: 2716 Signs: 1717 . Length: 45 pic 0 pts, 190 mm

where q and w are given constants, and then characterized all OPS's
[Pn(x)]�

n=0 such that [LPn(x)]�
n=1 is also an OPS. Note that when q=1

and w=1 or &1, L becomes 2 or { respectively and when w=0 and
q � 1, L becomes d�dx.

As an immediate consequence of Proposition 2.5, we obtain: if
[Pn(x)]�

n=0 is a discrete classical OPS satisfying the difference equation
(1.1), then [{Pn(x)]�

n=1 is also a discrete classical OPS satisfying the
difference equation

l2(x&1) 2{y(x)+({l2(x)+l1(x)) 2y(x)=(*n&{l1(x)) y(x).

By induction, for any integer r�1, [{rPn(x)]�
n=r is also a discrete classical

OPS.

Definition 2.3 [20]. A moment functional _ is called discrete semi-
classical if _ is regular and there are polynomials ,(x)�0 and �(x) of
degree �1 such that

2(,_)=�_. (2.12)

For any discrete semi-classical moment functional _, we call s :=
min[max(deg(,)&2, deg(�)&1] the class number of _, where the minimum
is taken over all pairs of polynomials (,, �) satisfying the equation (2.12).
In this case, we call _ a discrete semi-classical moment functional of class
s and an OPS [Pn(x)]�

n=0 relative to _ is called a discrete semi-classical
OPS of class s.

We can restate the equivalence of the statements (i) and (iv) in
Proposition 2.5 as: an OPS is a discrete classical OPS if and only if it is a
discrete semi-classical OPS of class 0.

Lemma 2.6. Let _ be a discrete semi-classical moment functional satisfying

2(,1_)=�1 _
2(,2_)=�2_

(s1 :=max(t1&2, p1&1))
(s2 :=max(t2&2, p2&1)),

(2.13)

where tj=deg(,j) and pj=deg(�j), j=1, 2. Let ,(x) be a common factor of
,1(x) and ,2(x) of the highest degree. Then, there is a polynomial �(x) such
that

2(,_)=�_,

where s :=max(deg(,)&2, deg(�)&1)=s1&t1+deg(,)=s2&t2+deg(,).
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Proof. We may assume that ,1=,� 1, and ,2=,� 2 ,, where ,� 1 and ,� 2

are co-prime polynomials. From the equation (2.13), we have

,� 1(x+1) 2(,_)=(�1&,2,� 1) _, (2.14)

,� 2(x+1) 2(,_)=(�2&,2,� 2) _. (2.15)

Multiplying (2.14) by ,� 2(x+1) and (2.15) by ,� 1(x+1) and substracting
the resulting two equations, we have

(�1&,2,� 1) ,� 2(x+1)=(�2&,2,� 2) ,� 1(x+1).

Since ,� 1 and ,� 2 are co-prime, ,� 1(x+1) and ,� 2(x+1) are also co-prime.
Hence �2&,2,� 2 and �1&,2,� 1 are divisible by ,� 2(x+1) and ,� 1(x+1)
respectively so that there exists a polynomial � such that

�2&,2,� 2=�,� 2(x+1) and �1&,2,� 1=�,� 1(x+1).

From the equation (2.14) and (2.15), we have

,� 2(x+1)[2(,_)&�_]=0 and ,� 1(x+1)[2(,_)&�_]=0.

Since ,� 1(x+1) and ,� 2(x+1) are co-prime, we have another equation of
the form (2.12):

2(,_)&�_=0.

The class number follows from just counting degrees of ,(x) and �(x). K

Proposition 2.7. Let _ be a discrete semi-classical moment functional of
class s satisfying the equation (2.12) with s=max(deg(,)&2, deg(�)&1). If
_ satisfies the equation (2.12) with another pair of polynomials (,1 , �1){
(0, 0), then ,1(x) is divisible by ,(x).

Proof. Let :(x) be the greatest common divisor of ,(x) and ,1(x). Then
by Lemma 2.6, there is a polynomial ;(x) such that

2(:_)=;_

and s0 :=max(deg(:)&2, deg(;)&1)=s&deg(,)+deg(:). Since s0�s,
deg(:)�deg(,) so that :(x)=c,(x) for some non-zero constant c. Hence,
,(x) must divide ,1(x). K

Remark 2.2. The continuous versions of Lemma 2.6 and Proposition
2.7 are proved in [18] and [14] respectively.
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3. MAIN THEOREMS.

We start with a theorem.

Theorem 3.1. For an OPS [Pn(x)]�
n=0 relative to a regular moment

functional _ and an integer r�1, the following statements are all equivalent.

(i) [{rPn(x)]�
n=r is a QOPS.

(ii) There are r+1 polynomials [ak(x)]2r
r with a2r(x)�0, deg(ak)�k,

k=r, r+1, ..., 2r, and

2(ak_)=ak&1 _, k=r+1, ..., 2r. (3.1)

(iii) There are moment functional { ({0) and r+1 polynomials
[ak(x)]2r

r with deg(ak)�k, k=r, r+1, ..., 2r and

22r&k{=ak(x) _, k=r, r+1, ..., 2r. (3.2)

Proof. (i) O (iii): Assume that [{rPn(x)]�
n=r is a QOPS relative to {

({0). Then,

({, {rPr) {0 and ({, {rPm{rPn)=0 for all m{n.

For m=r, we have ({, {rPn)=(&1)r (2r{, Pn) =0 for all n�r+1 so
that by Lemma 2.1(ii),

2r{=ar(x) _ with deg(ar)�r.

In fact, deg(ar)=r since (2r{, Pr) {0. For m=r+1, we have for any
n�r+2,

0=({, {rPr+1{rPn)=(&1)r (2r[({rPr+1) {], Pn)

=(&1)r (2r&1[{rPr+1(x+1) 2{+(2{rPr+1) {], Pn)

=(&1)r (2rPr+12r{+c(r) 2r&1{, Pn) ,

where the constant c(r)=2r+1[Pr+1(x&r+1)+Pr+1(x&r+2)+ } } } +
Pr+1(x)]=r(r+1)!. Hence, we have by Lemma 2.1(ii)

2rPr+12r{+c(r) 2r&1{=,r+1_,

where deg(,r+1)�r+1. Hence, 2r&1{=ar+1 _ with deg(ar+1)=
deg(,r+1&2rPr+1ar)�r+1. Continuing the same process for
m=r+2, r+3, ..., 2r, we obtain (iii).

(ii) � (iii): It immediately follows by taking {=a2r(x)_.
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(iii) O (i): Assume that the condition (iii) holds. Then we have for
r�m<n

({, {rPm{rPn)=(&1)r (2r[({rPm) {], Pn)

=(&1)r (2r&1[(2{rPm) {+(2{r&1Pm) 2{], Pn)

=(&1)r� :
r

k=0
\ r

k+ (2r{r&kPm) 2k{, Pn�
=(&1)r :

r

k=0
\ r

k+ (2k{, (2r{r&kPm) Pn)

=(&1)r :
r

k=0
\ r

k+ (_, a2r&k(2r{r&kPm) Pn)

=0,

since deg(a2r&k[2r{r&kPm])�m. Hence [{rPn(x)]�
n=r is a QOPS relative

to {. K

Remark 3.1. For arbitrary constant a ({0) and b, we have that
[Pn(ax+b)]�

n=0 is also an OPS if [Pn(x)]�
n=0 is an OPS. Hence, the

condition (i) in Theorem 3.1 is equivalent to that [2rPn(x)=
{rPn(x+r)]�

n=r is a QOPS. ln fact, we have the same results even though
2 or { in Proposition 2.5 and in Theorem 3.1 are replaced by { or 2
respectively.

Lemma 3.2 (cf. Lemma 3.4 in [14]). Let [Pn(x)]�
n=0 be a monic OPS

relative to a regular moment functional _. For an integer r�1, let
[Qn(x) :=(1�(P(n+r&1, r&1))) {r&1Pn+r&1(x)]�

n=0 and [Rn(x) :=
(1�(n+1)) {Qn+1(x)]�

n=0 . If [Rn(x)]�
n=0 is a QOPS relative to {, then

[Qn(x)]�
n=0 satisfy the following recurrence relation:

Qn+1(x)=(x&;n) Qn(x)&#nQn&1(x)& :
n&2

j=0

$ j
nQj (x), n�1, (3.3)

where ;n , #n , and $ j
n are real constants with $0

1=$&1
1 =0 and $1

n=0, n�1.

Proof. Since [Pn(x)]�
n=0 is an OPS, [Pn(x)]�

n=0 satisfy a three-term
recurrence relation

Pn+1(x)=(x&bn) Pn(x)&cnPn&1(x), n�1, (3.4)

where bn and cn are real constants with cn {0, n�1. Replacing n by
n+r&1 in (3.4) and then acting {r&1 and {r on both sides, we obtain for
n�0
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{r&1Pn+r(x)=(x&r+1&bn+r&1) {r&1Pn+r&1(x)

&cn+r&1{r&1Pn+r&2(x)+(r&1) {r&2Pn+r&1(x), (3.5)

{rPn+r(x)=(x&r&bn+r&1) {rPn+r&1(x)

&cn+r&1{rPn+r&2(x)+r{r&1Pn+r&1(x). (3.6)

On the other hand, as a monic PS, [Rn(x)]�
n=0 satisfy

Rn+1(x)=(x&b� n) Rn(x)&c~ n Rn&1(x)& :
n&2

j=0

$� j
n Rj (x), n�1, (3.7)

where b� n , c~ n , and $� j
n are real constants with $� 0

1=$� &1
1 =0 and R&1(x)#0.

Applying { to (3.7) and using the quasi-orthogonality of [Rn(x)]�
n=0

relative to {, we obtain $� 0
n=0, n�2 so that (3.7) reduces to

Rn+1(x)=(x&b� n) Rn(x)&c~ n Rn&1(x)& :
n&2

j=1

$� j
n Rj (x), n�2 ($� 1

2=0).

(3.8)

From (3.8) with n replaced by n+r&1 and (3.6), we obtain

r{r&1Pn+r&1=_ r
n

x+r+bn+r&1&b� n&1

n+r
n & {rPn+r&1

+_cn+r&1&c~ n&1

(n+r)(n+r&1)
n(n&1) & {rPn+r&1

& :
n&3

j=1

$� j
n&1

(n+1)r

( j+1)r
{rPj+r ,

={ _\r
n

x+r+bn+r&1&b� n&1

n+r
n + {r&1Pn+r&1 &

+
r
n

{rPn+r&1&
r
n

{r&1Pn+r&1

+_cn+r&1&c~ n&1

(n+r)(n+r&1)
n(n&1) & {rPn+r&2

& :
n&3

j=1

$� j
n&1

(n+1)r

( j+1)r
{rPj+r , n�3.
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Since, for any polynomials f (x) and g(x), {g(x)={f (x) if and only if
f (x)= g(x)+c with arbitrary constant c, we have

{r&2Pn+r&1=\ x
n+1

+
nbn+r&1

r(n+1)
&

(n+r) b� n&1

r(n+1)
&

n+r
n+1+ {r&1Pn+r&1

+\ncn+r&1

r(n+1)
&

(n+r)(n+r&1) c~ n&1

r(n&1)(n+1) + {r&1Pn+r&2

& :
n&3

j=1

$� j
n&1

n
r(n+1)

(n+1)r

( j+1)r
{r&1Pj+r+dn , (3.9)

where dn is a constant. Substituting (3.9) into (3.5) yields

{r&1Pn+r=\&(n+r) cn+r&1

(n+1) r
&

(r&1)(n+r)(n+r&1) c~ n&1

r(n&1)(n+1) +
_{r&1Pn+r&2+

n+r
r(n+1)

_\rx&bn+r&1&(r&1) b� n&1+
r(1&r)(n+r+1)

n+r +
_{r&1Pn+r&1& :

n&3

j=1

(r&1) n
r(n+1)

(n+1)r

( j+1)r

_{r&1Pj+r+(r&1) dn , n�3.

This last equation can be rewritten into the equation (3.3) by the definition
of Qn(x) for n�3. The equation (3.3) for n=1 or 2 is trivial. K

Lemma 3.3 (cf. Lemma 3.5 in [14]). Let [Pn(x)]�
n=0 , [Qn(x)]�

n=0, and
[Rn(x)]�

n=0 be the same as in Lemma 3.2. Let [un]�
n=0 , [vn]�

n=0, and
[wn]�

n=0 be the dual sequences of [Pn(x)]�
n=0 , [Qn(x)]�

n=0 , and
[Rn(x)]�

n=0 respectively. If [Rn(x)]�
n=0 is a QOPS, then

(i) there are r+1 polynomials [ak(x)]2r
r with a2r(x)�0, deg(ak)�k,

k=r, ..., 2r, and

22r&kw0=ak(x) u0 , k=r, ..., 2r (3.10)

and
(ii) there are r polynomials [hk(x)]2r

r+1 with h2r(x)�0, deg(hk)�k,
k=r+1, ..., 2r, and

22r&kv0=hk(x) u0 , k=r+1, ..., 2r. (3.11)

Moreover, we also have deg(ar)=r and deg(hr+1)=r&1.

166 KWON, LEE, AND PARK



File: 640J 302812 . By:DS . Date:21:04:97 . Time:08:20 LOP8M. V8.0. Page 01:01
Codes: 2417 Signs: 1266 . Length: 45 pic 0 pts, 190 mm

Proof. Assume that [Rn(x)]�
n=0 is a QOPS. Then w0 is an ortho-

gonalizing moment functional of [Rn(x)]�
n=0 . Hence we have (i) from the

equivalence of the statements (i) and (iii) in Theorem 3.1.
By Lemma 3.2, [Qn(x)]�

n=0 satisfy the recurrence relation (3.3). Applying v1

to (3.3), we obtain (xv1 , Qn)=0, n�3 so that by Lemma 2.2

xv1=e0v0+e1 v1+e2v2 ,

where ej=(xv1 , Qj) , j=0, 1, 2. Since e0=(xv1 , Q0) =(v1 , x) =
(v1 , Q1) =1, we have by Lemma 2.3

v0=(&x+e1) 2w0+
e2

2
2w1 . (3.12)

On the other hand, applying w0 to (3.8), we obtain (xw0 , Rn)=0, n�2
so that by Lemma 2.2

xw0=c0w0+c1 w1 ,

where cj=(xw0 , Rj) , j=0, 1. If c1=0, then (x&c0) w0=(x&c0) a2r(x)
u0=0 by (3.10). It is a contradiction since u0 is regular and a2r(x)�0.
Hence, c1 {0 and

w1=
x&c0

c1

w0 . (3.13)

Substituting (3.13) into (3.12), we obtain

v0=?2r(x) u0 , (3.14)

where ?2r(x) is a polynomial of degree �2r. Acting 2 on (3.14)
successively, we obtain (3.11) from (3.10).

Finally we have

(2rw0 , Pn) =(&1)r (w0 , {rPn)

={0
(&1)r (w0 , P(n, r) Rn&r)

if n{r
if n=r

so that ar(x) u0=2rw0=(&1)r r!ur=(&1)r r!CrPr(x) u0 by Lemma 2.4.
Hence deg(ar)=r.

Similarly we have hr+1(x) u0=2r&1v0=(&1)r&1 (r&1)! Cr&1Pr&1(x) u0

so that deg(hr+1)=r&1. K

Now, we are ready to give our main result which is the discrete version
of Hahn's theorem [8].
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Theorem 3.4. Let [Pn(x)]�
n=0 be an OPS relative to a regular moment

functional _ and r�1 an integer. Then any one of the equivalent statements
in Theorem 3.1 is also equivalent to

(iv)[Pn(x)]�
n=0 is a discrete classical OPS.

Proof. Assume that [Pn(x)]�
n=0 is a discrete classical OPS. Then,

[{rPn(x)]�
n=r is also a discrete classical OPS for any integer r�1. Hence,

the statement (i) in Theorem 3.1 holds.
Conversely, we assume that the statement (i) in Theorem 3.1 holds. If

r=1, [Pn(x)]�
n=0 is a discrete classical OPS by the Proposition 2.5.

Hence we assume r�2. Then, by induction, it suffices to show that
[{r&1Pn(x)]�

r&1 is a QOPS or equivalently there exist r&1 polynomials
[gk(x)]2(r&1)

r&1 with g2(r&1)(x)�0, deg(gk)�k, r&1�k�2(r&1) and

2(gk_)= gk&1_, k=r, r+1, ..., 2r&2.

We may assume [Pn(x)]�
n=0 is a monic PS and let [Qn(x)]�

n=0 ,
[Rn(x)]�

n=0, [un]�
n=0 , [vn]�

n=0, and [wn]�
n=0 be the same as in

Lemma 3.3. Since [{rPn(x)]�
n=r is a QOPS, by Lemma 3.3, we have

polynomials [ak(x)]2r
r and [hk(x)]2r

r+1 satisfying (3.10) and (3.11). Hence,
the moment functional u0 satisfies

2(aku0)=ak&1u0 , k=r+1, ..., 2r, (3.15)

2(hku0)=hk&1u0 , k=r+2, ..., 2r. (3.16)

Now, let s (�0) be the class number of the discrete semi-classical moment
functional u0 and (:(x), ;(x)){(0, 0) a pair of polynomials satisfying

2(:u0)=;u0 with s=max(deg(:)&2, deg(;)&1).

Then we have from Proposition 2.7

ak(x)=a~ k(x) :(x), k=r+1, ..., 2r, (3.17)

hk(x)=h� k(x) :(x), k=r+2, ..., 2r, (3.18)

where a~ k(x) and h� k(x) are polynomials. Hence we have from (3.15), (3.16),
(3.17), and (3.18)

2a~ k:+a~ k(x+1) ;=ak&1 , k=r+1, ..., 2r; (3.19)

2h� k:+h� k(x+1) ;=hk&1 , k=r+2, ..., 2r. (3.20)

From now on, we divide the proof into two cases: s=deg(:)&2�
deg(;)&1 and s=deg(;)&1>deg(:)&2.
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Case I. s=deg(:)&2�deg(;)&1. Counting degrees on both sides of
the equation (3.19), we have deg(ak&1)+1�deg(ak), r+1�k�2r since
deg(:)�deg(;)+1. Hence we have

deg(ak)=k, k=r, r+1, ..., 2r

since deg(ar)=r and deg(ak)�k, k=r, ..., 2r. Similarly, counting degrees
on both sides of the equation (3.20), we have deg(hk&1)+1�deg(hk),
r+2�k�2r. We now claim that

deg(hk&1)+1=deg(hk), k=r+2, ..., 2r. (3.21)

If not, let j be the first integer �r+2 such that deg(hj&1)+1<deg(hj).
Then, deg(hk)=k&2, k=r+1, ..., j&1 and j&2<deg(hj)� j since
deg(hr+1)=r&1. Since r+2� j�2r, deg(hj)=m=deg(am) for some
m=r+1, ..., 2r. Let A ({0) and B ({0) be the leading coefficients of
am(x) and hj (x) respectively. Multiplying the equation (3.19) for k=m by
B and the equation (3.20) for k= j by A and subtracting these two equa-
tions, we obtain

(B2a~ m&A2h� j) :+(Ba~ m(x+1)&Ah� j (x+1)) ;

=Bam&1&Ahj&1. (3.22)

We then have deg(Bam&1&Ahj&1)=m&1 since deg(am&1)=m&1>
j&3=deg(hj&1). However, the degree of the left hand side of the
equation (3.22) is at most m&2 since deg(Bam&Ahj)�m&1 and
deg(;)�deg(:)&1. It is a contradiction so that we have (3.21).

Since deg(hr+1)=r&1, we have from (3.21)

deg(hk)=k&2, k=r+1, ..., 2r. (3.23)

If we set gk(x)=hk+2(x), k=r&1, ..., 2(r&1), then [gk]2(r&1)
r&1 satisfy the

condition (ii) in Theorem 3.1 with r replaced by r&1 and _ replaced by u0

by (3.16) and (3.23). Hence, by Theorem 3.1 and induction hypothesis,
[Pn(x)]�

n=0 is a discrete classical OPS relative to u0 .

Case II. s=deg(;)&1>deg(:)&2. Counting degrees on both sides of
the equation (3.19), we have

deg(ak)=deg(ak&1)+deg(:)&deg(;), k=r+1, ..., 2r

so that

deg(ak)=deg(ar)+(k&r)(deg(:)&deg(;))

=r+(k&r)(deg(:)&deg(;)), k=r+1, ..., 2r. (3.24)
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In particular, we have for k=2r in (3.24) deg(a2r)=r(deg(:)&s). Since
deg(a2r)�deg(:)�0, s�deg(:)<s+2 so that deg(:) is either s or s+1. If
deg(:)=s, then s=0 and so [Pn(x)]�

n=0 is a discrete classical OPS. If
deg(:)=s+1, then we have by counting degrees on both sides of the
equation (3.20)

deg(hk)=deg(hk&1), k=r+2, ..., 2r

so that

deg(hk)=r&1, k=r+1, ..., 2r. (3.25)

If we set gk(x)=hk+2(x), k=r&1, ..., 2(r&1), then [gk(x)]2(r&1)
r&1 satisfy

the condition (ii) in Theorem 3.1 with r replaced by r&1 and _ replaced by
u0 by (3.16) and (3.25). Hence, by Theorem 3.1 and induction hypothesis,
[Pn(x)]�

n=0 is a discrete classical OPS relative to u0 . K
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