New Characterizations of Discrete Classical Orthogonal Polynomials

K. H. Kwon, D. W. Lee, and S. B. Park
Department of Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-ku, Taejon 305-701, Korea
E-mail: khkwon@jacobi.kaist.ac.kr
Communicated by Doron S. Lubinsky

Received May 23, 1995; accepted in revised form February 27, 1996

We prove that if both $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ are orthogonal polynomials for any fixed integer $r \geqslant 1$, then $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ must be discrete classical orthogonal polynomials. This result is a discrete version of the classical Hahn's theorem stating that if both $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{(d / d x)^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ are orthogonal polynomials, then $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ are classical orthogonal polynomials. We also obtain several other characterizations of discrete classical orthogonal polynomials. © 1997 Academic Press

1. INTRODUCTION

Consider a sequence of polynomials that arise as eigenfunctions of the second-order difference equation of hypergeometric type

$$
\begin{equation*}
L_{2}[y](x)=\ell_{2}(x) \Delta \nabla y(x)+\ell_{1}(x) \Delta y(x)=\lambda_{n} y(x), \tag{1.1}
\end{equation*}
$$

where $\ell_{2}(x)=\ell_{22} x^{2}+\ell_{21} x+\ell_{20}(\not \equiv 0)$ and $\ell_{1}(x)=\ell_{11} x+\ell_{10}$ are polynomials independent of n and

$$
\begin{equation*}
\lambda_{n}=n(n-1) \ell_{22}+n \ell_{11}, \quad n=0,1,2, \ldots . \tag{1.2}
\end{equation*}
$$

Orthogonal polynomials satisfying (1.1) are known as discrete classical orthogonal polynomials and they are well studied [6, 13, 15, 16, 19, 23]. Like classical orthogonal polynomials satisfying second-order differential equations of hypergeometric type, discrete classical orthogonal polynomials can be characterized in many different ways (see [1-5, 7, 8, 10, 14, 18]). In particular, it is well known that classical orthogonal polynomials (respectively, discrete classical orthogonal polynomials) are the only orthogonal polynomials $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ such that $\left\{P_{n}^{\prime}(x)\right\}_{n=1}^{\infty}$ (respectively, $\left\{\nabla P_{n}(x)\right\}_{n=1}^{\infty}$) is also orthogonal (see [4, 11, 12, 14, 17, 21, 22]). Later, Hahn [8] (see also [7, 9]) showed that the only orthogonal polynomials
whose derivatives of any fixed order are also orthogonal are the classical orthogonal polynomials.

In this work, we obtain a discrete version of Hahn's theorem by showing that discrete classical orthogonal polynomials are the only orthogonal polynomials $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ such that $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ (or $\left\{\Delta^{r} P_{n}(x)\right\}_{n=r}^{\infty}$) is quasi-orthogonal (see Definition 2.1) for any fixed integer $r \geqslant 1$.

2. PRELIMINARIES

All polynomials in this work are assumed to be real polynomials of a real variable x and we let \mathscr{P} be the space of all polynomials. We denote the degree of a polynomial $\psi(x)$ by $\operatorname{deg}(\psi)$ with the convention that $\operatorname{deg}(0)=-1$.

By a polynomial system (PS), we mean a sequence of polynomials $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ with $\operatorname{deg}\left(P_{n}\right)=n, n \geqslant 0$. We call any linear functional σ on \mathscr{P} a moment functional and denote its action on a polynomial $\psi(x)$ by $\langle\sigma, \psi\rangle$. In particular, we call $\left\{\left\langle\sigma, x^{n}\right\rangle\right\}_{n=0}^{\infty}$ the moments of σ.

Any PS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ determines a unique sequence of moment functionals $\left\{u_{n}\right\}_{n=0}^{\infty}$, called the dual sequence of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ (cf. [18]), by the conditions

$$
\begin{equation*}
\left\langle u_{n}, P_{m}\right\rangle=\delta_{m n} \quad(m \text { and } n \geqslant 0) \tag{2.1}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta function. In particular, we call u_{0} the canonical moment functional of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$.

Definition 2.1. We call a PS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ a quasi-orthogonal polynomial system (QOPS) (respectively, an orthogonal polynomial system (OPS)) if there is a non-zero moment functional σ such that

$$
\begin{equation*}
\left\langle\sigma, P_{m} P_{n}\right\rangle=K_{n} \delta_{m n} \quad(m \text { and } n \geqslant 0), \tag{2.2}
\end{equation*}
$$

where K_{n} are real (respectively, non-zero real) constants. In this case, we say that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a QOPS or an OPS relative to σ and call σ an orthogonalizing moment functional of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$.

Note that if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a QOPS relative to σ, then $\left\langle\sigma, P_{0}^{2}\right\rangle \neq 0$ but $\left\langle\sigma, P_{n}^{2}\right\rangle$ for $n \geqslant 1$ may or may not be 0 and σ must be a non-zero constant multiple of the canonical moment functional u_{0} of the PS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$.

We say that a moment functional σ is regular (respectively, positivedefinite) if its moments $\left\{\left\langle\sigma, x^{n}\right\rangle\right\}_{n=0}^{\infty}$ satisfy the Hamburger condition

$$
\begin{equation*}
\Delta_{n}(\sigma):=\operatorname{det}\left[\left\langle\sigma, x^{i+j}\right\rangle\right]_{i, j=0}^{n} \neq 0 \quad\left(\text { respectively, } \Delta_{n}(\sigma)>0\right) \tag{2.3}
\end{equation*}
$$

for every $n \geqslant 0$. It is well known (see Chapter 1 in Chihara [5]) that a moment functional σ is regular if and only if there is an OPS relative to σ.

For a moment functional σ and a polynomial $\phi(x)$, we let $\Delta \sigma, \nabla \sigma$ and $\phi \sigma$, be the moment functionals defined by

$$
\begin{aligned}
& \langle\Delta \sigma, \psi\rangle=-\langle\sigma, \nabla \psi\rangle, \quad\langle\nabla \sigma, \psi\rangle=-\langle\sigma, \Delta \psi\rangle, \\
& \langle\phi \sigma, \psi\rangle=\langle\sigma, \phi \psi\rangle \quad(\psi \in \mathscr{P}),
\end{aligned}
$$

where $\Delta \psi(x)=\psi(x+1)-\psi(x)$ and $\nabla \psi(x)=\psi(x)-\psi(x-1)$. Then we have the following Leibniz rule:

$$
\begin{equation*}
\Delta(\phi \sigma)=\phi(x+1) \Delta \sigma+\Delta(\phi) \sigma, \quad \nabla(\phi \sigma)=\phi(x-1) \nabla \sigma+\nabla(\phi) \sigma, \tag{2.4}
\end{equation*}
$$

and $\Delta \sigma=0($ or $\nabla \sigma=0)$ if and only if $\sigma=0$.
Lemma 2.1 [14]. Let σ be a regular moment functional and $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ an OPS relative to σ. Then we have
(i) for any polynomial $\phi(x), \phi(x) \sigma=0$ if and only if $\phi(x) \equiv 0$.
(ii) for any moment functional $\tau(\neq 0)$ and any integer $k \geqslant 0$, $\left\langle\tau, P_{n}\right\rangle=0$ for $n>k$ if and only if $\tau=\psi(x) \sigma$ for some polynomial $\psi(x)$ of degree $\leqslant k$.

In this case, $\operatorname{deg}(\psi)=k_{0}\left(0 \leqslant k_{0} \leqslant k\right)$ is the largest integer such that $\left\langle\tau, P_{n}\right\rangle=0$ for $n>k_{0}$ and $\left\langle\tau, P_{k_{0}}\right\rangle \neq 0$.

Lemma 2.2 [18]. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a PS and $\left\{u_{n}\right\}_{n=0}^{\infty}$ the dual sequence of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$. Then for any moment functional τ and any integer $k \geqslant 0$, the following two statements are equivalent.
(i) $\left\langle\tau, P_{k}\right\rangle \neq 0$ and $\left\langle\tau, P_{n}\right\rangle=0$ for $n>k$.
(ii) There exist real constants $\left\{e_{j}\right\}_{j=0}^{k}$ such that $e_{k} \neq 0$ and

$$
\begin{equation*}
\tau=\sum_{j=0}^{k} e_{j} u_{j} . \tag{2.5}
\end{equation*}
$$

Lemma 2.3. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a PS and $\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ the dual sequences of PS's $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x):=(1 /(n+1)) \nabla P_{n+1}^{\infty}(x)\right\}_{n=0}^{\infty}$, respectively. Then, we have

$$
\begin{equation*}
\Delta v_{n}=-(n+1) u_{n+1} \quad(n \geqslant 0) . \tag{2.6}
\end{equation*}
$$

Proof. Since $\left\langle\Delta v_{n}, P_{m}\right\rangle=-\left\langle v_{n}, \nabla P_{m}\right\rangle=-m\left\langle v_{n}, Q_{m-1}\right\rangle=-m \delta_{n, m-1}$ for n and $m \geqslant 0\left(Q_{-1}(x) \equiv 0\right)$, we have (2.6) by Lemma 2.2.

Lemma 2.4 [18]. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a PS and $\left\{u_{n}\right\}_{n=0}^{\infty}$ the dual sequence of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$. Then the following two statements are equivalent.
(i) $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS.
(ii) For each $n \geqslant 0$, there is a non-zero real constant C_{n} such that

$$
\begin{equation*}
u_{n}=C_{n} P_{n}(x) u_{0} \tag{2.7}
\end{equation*}
$$

Note that Lemma 2.1 is an easy consequence of Lemma 2.3 and Lemma 2.4.

Definition 2.2. An OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is called a discrete classical OPS if for each $n \geqslant 0, P_{n}(x)$ satisfies the second order difference equation (1.1).

Proposition 2.5. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be an OPS relative to a regular moment functional σ. Then, the following statements are all equivalent.
(i) $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is discrete classical OPS relative to σ.
(ii) $\left\{\nabla P_{n}(x)\right\}_{n=1}^{\infty}$ is an OPS.
(iii) $\left\{\nabla P_{n}(x)\right\}_{n=1}^{\infty}$ is a QOPS.
(iv) There are polynomials $\ell_{2}(x)(\not \equiv 0)$ of degree $\leqslant 2$ and $\ell_{1}(x)$ of degree 1 such that σ satisfies

$$
\begin{equation*}
\Delta\left(\ell_{2} \sigma\right)=\ell_{1} \sigma \tag{2.8}
\end{equation*}
$$

Proof. It is well known $([6,19])$ that (i) is equivalent to (iv).
(i) \Rightarrow (ii): Assume that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to σ satisfying the difference equation (1.1). At first we prove that $\lambda_{n} \neq 0$ for all $n \geqslant 1$. Assume $\lambda_{n}=0$ for some $n \geqslant 1$. Then we have by (2.8)

$$
\begin{aligned}
0 & =\lambda_{n} P_{n} \sigma=\left[\ell_{2} \Delta \nabla P_{n}+\ell_{1} \Delta P_{n}\right] \sigma \\
& =\ell_{2}\left[\Delta \nabla P_{n}\right] \sigma+\Delta P_{n} \Delta\left(\ell_{2} \sigma\right) \\
& =\Delta\left[\left(\nabla P_{n}\right) \ell_{2} \sigma\right]
\end{aligned}
$$

so that $\left(\nabla P_{n}(x)\right) \ell_{2}(x) \sigma=0$. Hence $\left(\nabla P_{n}(x)\right) \ell_{2} \equiv 0$ by Lemma 2.1(i) and so $\nabla P_{n}(x) \equiv 0$ since $\ell_{2}(x) \not \equiv 0$, which implies $n=0$ contradicting the fact that $n \geqslant 1$. Since (i) is equivalent to (iv), we have

$$
\lambda_{n} P_{n} \sigma=\ell_{2} \Delta \nabla P_{n} \sigma+\ell_{1} \Delta P_{n} \sigma=\Delta\left[\left(\nabla P_{n}\right) \ell_{2} \sigma\right] .
$$

Hence,

$$
\begin{aligned}
\left\langle\ell_{2} \sigma, \nabla P_{m+1} \nabla P_{n+1}\right\rangle & =-\left\langle\Delta\left[\left(\nabla P_{n+1}\right) \ell_{2} \sigma\right], P_{m+1}\right\rangle \\
& =-\lambda_{n+1}\left\langle\sigma, P_{m+1} P_{n+1}\right\rangle .
\end{aligned}
$$

Therefore, $\left\{\nabla P_{n+1}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to $\ell_{2}(x) \sigma$ since $\lambda_{n+1} \neq 0$, $n \geqslant 0$ and $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to σ.

Since (ii) implies (iii) by definition, it suffices to show that (iii) implies (iv).
(iii) \Rightarrow (iv): Assume that $\left\{\nabla P_{n+1}(x)\right\}_{n=0}^{\infty}$ is a QOPS relative to τ $(\not \equiv 0)$ so that

$$
\begin{equation*}
\left\langle\tau, \nabla P_{m+1} \nabla P_{n+1}\right\rangle=0 \quad \text { for } \quad m \neq n, \quad m \text { and } n \geqslant 0 \tag{2.9}
\end{equation*}
$$

Set $m=0$ in (2.9). Then we have for every $n>0$

$$
0=\left\langle\tau, \nabla P_{1} \nabla P_{n+1}\right\rangle=-\nabla P_{1}\left\langle\Delta \tau, P_{n+1}\right\rangle
$$

so that $\left\langle\Delta \tau, P_{n+1}(x)\right\rangle=0$. Hence Lemma 2.1(ii) implies

$$
\begin{equation*}
\Delta \tau=\ell_{1}(x) \sigma \tag{2.10}
\end{equation*}
$$

for some polynomial $\ell_{1}(x)$ of degree $\leqslant 1$. Set $m=1$ in (2.9). Then for every $n>1$, we have

$$
\begin{aligned}
0 & =\left\langle\tau, \nabla P_{2} \nabla P_{n+1}\right\rangle=-\left\langle\Delta\left[\left(\nabla P_{2}\right) \tau\right], P_{n+1}\right\rangle \\
& =-\left\langle\left[\Delta \nabla P_{2}\right] \tau, P_{n+1}\right\rangle-\left\langle\Delta P_{2} \Delta \tau, P_{n+1}\right\rangle \\
& =-\left[\Delta \nabla P_{2}\right]\left\langle\tau, P_{n+1}\right\rangle-\left\langle\Delta \tau,\left[\Delta P_{2}\right] P_{n+1}\right\rangle \\
& =-\left[\Delta \nabla P_{2}\right]\left\langle\tau, P_{n+1}\right\rangle-\left\langle\sigma, \ell_{1}\left[\Delta P_{2}\right] P_{n+1}\right\rangle .
\end{aligned}
$$

Since $\left\langle\sigma, \ell_{1}\left[\Delta P_{2}\right] P_{n+1}\right\rangle=0$ for $n>1$ and $\nabla \Delta P_{2}(x) \not \equiv 0,\left\langle\tau, P_{n+1}(x)\right\rangle=0$ for $n>1$ so that by Lemma 2.1(ii),

$$
\begin{equation*}
\tau=\ell_{2}(x) \sigma \tag{2.11}
\end{equation*}
$$

for some polynomial $\ell_{2}(x)$ of degree $\leqslant 2$. The equation (2.8) follows from (2.10) and (2.11) and $\ell_{1}(x) \not \equiv 0, \ell_{2}(x) \not \equiv 0$ since $\tau \neq 0$. If $\ell_{1}(x)=c, c$ a non-zero constant, then

$$
\langle\sigma, 1\rangle=\frac{1}{c}\left\langle\Delta\left(\ell_{2} \sigma\right), 1\right\rangle=0,
$$

which is impossible since σ is regular. Hence, $\operatorname{deg}\left(\ell_{1}\right)=1$.
Remark 2.1. In fact, Hahn ([9]) proved the equivalence of the statements (i) and (ii) in Proposition 2.5 in more general setting. He first introduced a linear operator

$$
L f(x)=\frac{f(q x+w)-f(x)}{(q-1) x+w}
$$

where q and w are given constants, and then characterized all OPS's $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ such that $\left\{L P_{n}(x)\right\}_{n=1}^{\infty}$ is also an OPS. Note that when $q=1$ and $w=1$ or $-1, L$ becomes Δ or ∇ respectively and when $w=0$ and $q \rightarrow 1, L$ becomes $d / d x$.

As an immediate consequence of Proposition 2.5, we obtain: if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS satisfying the difference equation (1.1), then $\left\{\nabla P_{n}(x)\right\}_{n=1}^{\infty}$ is also a discrete classical OPS satisfying the difference equation

$$
\ell_{2}(x-1) \Delta \nabla y(x)+\left(\nabla \ell_{2}(x)+\ell_{1}(x)\right) \Delta y(x)=\left(\lambda_{n}-\nabla \ell_{1}(x)\right) y(x) .
$$

By induction, for any integer $r \geqslant 1,\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is also a discrete classical OPS.

Definition 2.3 [20]. A moment functional σ is called discrete semiclassical if σ is regular and there are polynomials $\phi(x) \not \equiv 0$ and $\psi(x)$ of degree $\geqslant 1$ such that

$$
\begin{equation*}
\Delta(\phi \sigma)=\psi \sigma . \tag{2.12}
\end{equation*}
$$

For any discrete semi-classical moment functional σ, we call $s:=$ $\min \{\max (\operatorname{deg}(\phi)-2, \operatorname{deg}(\psi)-1\}$ the class number of σ, where the minimum is taken over all pairs of polynomials (ϕ, ψ) satisfying the equation (2.12). In this case, we call σ a discrete semi-classical moment functional of class s and an OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ relative to σ is called a discrete semi-classical OPS of class s.

We can restate the equivalence of the statements (i) and (iv) in Proposition 2.5 as: an OPS is a discrete classical OPS if and only if it is a discrete semi-classical OPS of class 0 .

Lemma 2.6. Let σ be a discrete semi-classical moment functional satisfying

$$
\begin{array}{ll}
\Delta\left(\phi_{1} \sigma\right)=\psi_{1} \sigma & \left(s_{1}:=\max \left(t_{1}-2, p_{1}-1\right)\right) \tag{2.13}\\
\Delta\left(\phi_{2} \sigma\right)=\psi_{2} \sigma & \left(s_{2}:=\max \left(t_{2}-2, p_{2}-1\right)\right),
\end{array}
$$

where $t_{j}=\operatorname{deg}\left(\phi_{j}\right)$ and $p_{j}=\operatorname{deg}\left(\psi_{j}\right), j=1,2$. Let $\phi(x)$ be a common factor of $\phi_{1}(x)$ and $\phi_{2}(x)$ of the highest degree. Then, there is a polynomial $\psi(x)$ such that

$$
\Delta(\phi \sigma)=\psi \sigma,
$$

where $s:=\max (\operatorname{deg}(\phi)-2, \operatorname{deg}(\psi)-1)=s_{1}-t_{1}+\operatorname{deg}(\phi)=s_{2}-t_{2}+\operatorname{deg}(\phi)$.

Proof. We may assume that $\phi_{1}=\tilde{\phi}_{1} \phi$ and $\phi_{2}=\tilde{\phi}_{2} \phi$, where $\tilde{\phi}_{1}$ and $\tilde{\phi}_{2}$ are co-prime polynomials. From the equation (2.13), we have

$$
\begin{align*}
& \tilde{\phi}_{1}(x+1) \Delta(\phi \sigma)=\left(\psi_{1}-\phi \Delta \tilde{\phi}_{1}\right) \sigma, \tag{2.14}\\
& \tilde{\phi}_{2}(x+1) \Delta(\phi \sigma)=\left(\psi_{2}-\phi \Delta \tilde{\phi}_{2}\right) \sigma . \tag{2.15}
\end{align*}
$$

Multiplying (2.14) by $\tilde{\phi}_{2}(x+1)$ and (2.15) by $\tilde{\phi}_{1}(x+1)$ and substracting the resulting two equations, we have

$$
\left(\psi_{1}-\phi \Delta \tilde{\phi}_{1}\right) \tilde{\phi}_{2}(x+1)=\left(\psi_{2}-\phi \Delta \tilde{\phi}_{2}\right) \tilde{\phi}_{1}(x+1) .
$$

Since $\tilde{\phi}_{1}$ and $\tilde{\phi}_{2}$ are co-prime, $\tilde{\phi}_{1}(x+1)$ and $\tilde{\phi}_{2}(x+1)$ are also co-prime. Hence $\psi_{2}-\phi \Delta \widetilde{\phi}_{2}$ and $\psi_{1}-\phi \Delta \widetilde{\phi}_{1}$ are divisible by $\tilde{\phi}_{2}(x+1)$ and $\tilde{\phi}_{1}(x+1)$ respectively so that there exists a polynomial ψ such that

$$
\psi_{2}-\phi \Delta \tilde{\phi}_{2}=\psi \tilde{\phi}_{2}(x+1) \quad \text { and } \quad \psi_{1}-\phi \Delta \tilde{\phi}_{1}=\psi \tilde{\phi}_{1}(x+1) .
$$

From the equation (2.14) and (2.15), we have

$$
\tilde{\phi}_{2}(x+1)[\Delta(\phi \sigma)-\psi \sigma]=0 \quad \text { and } \quad \tilde{\phi}_{1}(x+1)[\Delta(\phi \sigma)-\psi \sigma]=0 .
$$

Since $\tilde{\phi}_{1}(x+1)$ and $\tilde{\phi}_{2}(x+1)$ are co-prime, we have another equation of the form (2.12):

$$
\Delta(\phi \sigma)-\psi \sigma=0 .
$$

The class number follows from just counting degrees of $\phi(x)$ and $\psi(x)$.
Proposition 2.7. Let σ be a discrete semi-classical moment functional of class s satisfying the equation (2.12) with $s=\max (\operatorname{deg}(\phi)-2, \operatorname{deg}(\psi)-1)$. If σ satisfies the equation (2.12) with another pair of polynomials $\left(\phi_{1}, \psi_{1}\right) \neq$ $(0,0)$, then $\phi_{1}(x)$ is divisible by $\phi(x)$.

Proof. Let $\alpha(x)$ be the greatest common divisor of $\phi(x)$ and $\phi_{1}(x)$. Then by Lemma 2.6 , there is a polynomial $\beta(x)$ such that

$$
\Delta(\alpha \sigma)=\beta \sigma
$$

and $s_{0}:=\max (\operatorname{deg}(\alpha)-2, \operatorname{deg}(\beta)-1)=s-\operatorname{deg}(\phi)+\operatorname{deg}(\alpha)$. Since $s_{0} \geqslant s$, $\operatorname{deg}(\alpha) \geqslant \operatorname{deg}(\phi)$ so that $\alpha(x)=c \phi(x)$ for some non-zero constant c. Hence, $\phi(x)$ must divide $\phi_{1}(x)$.

Remark 2.2. The continuous versions of Lemma 2.6 and Proposition 2.7 are proved in [18] and [14] respectively.

3. MAIN THEOREMS.

We start with a theorem.
Theorem 3.1. For an $\operatorname{OPS}\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ relative to a regular moment functional σ and an integer $r \geqslant 1$, the following statements are all equivalent.
(i) $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is a QOPS.
(ii) There are $r+1$ polynomials $\left\{a_{k}(x)\right\}_{r}^{2 r}$ with $a_{2 r}(x) \not \equiv 0, \operatorname{deg}\left(a_{k}\right) \leqslant k$, $k=r, r+1, \ldots, 2 r$, and

$$
\begin{equation*}
\Delta\left(a_{k} \sigma\right)=a_{k-1} \sigma, \quad k=r+1, \ldots, 2 r . \tag{3.1}
\end{equation*}
$$

(iii) There are moment functional $\tau(\neq 0)$ and $r+1$ polynomials $\left\{a_{k}(x)\right\}_{r}^{2 r}$ with $\operatorname{deg}\left(a_{k}\right) \leqslant k, k=r, r+1, \ldots, 2 r$ and

$$
\begin{equation*}
\Delta^{2 r-k} \tau=a_{k}(x) \sigma, \quad k=r, r+1, \ldots, 2 r . \tag{3.2}
\end{equation*}
$$

Proof. (i) \Rightarrow (iii): Assume that $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is a QOPS relative to τ $(\neq 0)$. Then,

$$
\left\langle\tau, \nabla^{r} P_{r}\right\rangle \neq 0 \quad \text { and } \quad\left\langle\tau, \nabla^{r} P_{m} \nabla^{r} P_{n}\right\rangle=0 \quad \text { for all } \quad m \neq n .
$$

For $m=r$, we have $\left\langle\tau, \nabla^{r} P_{n}\right\rangle=(-1)^{r}\left\langle\Delta^{r} \tau, P_{n}\right\rangle=0$ for all $n \geqslant r+1$ so that by Lemma 2.1(ii),

$$
\Delta^{r} \tau=a_{r}(x) \sigma \quad \text { with } \quad \operatorname{deg}\left(a_{r}\right) \leqslant r .
$$

In fact, $\operatorname{deg}\left(a_{r}\right)=r$ since $\left\langle\Delta^{r} \tau, P_{r}\right\rangle \neq 0$. For $m=r+1$, we have for any $n \geqslant r+2$,

$$
\begin{aligned}
0 & =\left\langle\tau, \nabla^{r} P_{r+1} \nabla^{r} P_{n}\right\rangle=(-1)^{r}\left\langle\Delta^{r}\left[\left(\nabla^{r} P_{r+1}\right) \tau\right], P_{n}\right\rangle \\
& =(-1)^{r}\left\langle\Delta^{r-1}\left[\nabla^{r} P_{r+1}(x+1) \Delta \tau+\left(\Delta \nabla^{r} P_{r+1}\right) \tau\right], P_{n}\right\rangle \\
& =(-1)^{r}\left\langle\Delta^{r} P_{r+1} \Delta^{r} \tau+c(r) \Delta^{r-1} \tau, P_{n}\right\rangle,
\end{aligned}
$$

where the constant $c(r)=\Delta^{r+1}\left[P_{r+1}(x-r+1)+P_{r+1}(x-r+2)+\cdots+\right.$ $\left.P_{r+1}(x)\right]=r(r+1)$!. Hence, we have by Lemma 2.1(ii)

$$
\Delta^{r} P_{r+1} \Delta^{r} \tau+c(r) \Delta^{r-1} \tau=\phi_{r+1} \sigma
$$

where $\operatorname{deg}\left(\phi_{r+1}\right) \leqslant r+1$. Hence, $\Delta^{r-1} \tau=a_{r+1} \sigma$ with $\operatorname{deg}\left(a_{r+1}\right)=$ $\operatorname{deg}\left(\phi_{r+1}-\Delta^{r} P_{r+1} a_{r}\right) \leqslant r+1$. Continuing the same process for $m=r+2, r+3, \ldots, 2 r$, we obtain (iii).
(ii) \Leftrightarrow (iii): It immediately follows by taking $\tau=a_{2 r}(x) \sigma$.
(iii) \Rightarrow (i): Assume that the condition (iii) holds. Then we have for $r \leqslant m<n$

$$
\begin{aligned}
\left\langle\tau, \nabla^{r} P_{m} \nabla^{r} P_{n}\right\rangle & =(-1)^{r}\left\langle\Delta^{r}\left[\left(\nabla^{r} P_{m}\right) \tau\right], P_{n}\right\rangle \\
& =(-1)^{r}\left\langle\Delta^{r-1}\left[\left(\Delta \nabla^{r} P_{m}\right) \tau+\left(\Delta \nabla^{r-1} P_{m}\right) \Delta \tau\right], P_{n}\right\rangle \\
& =(-1)^{r}\left\langle\sum_{k=0}^{r}\binom{r}{k}\left(\Delta^{r} \nabla^{r-k} P_{m}\right) \Delta^{k} \tau, P_{n}\right\rangle \\
& =(-1)^{r} \sum_{k=0}^{r}\binom{r}{k}\left\langle\Delta^{k} \tau,\left(\Delta^{r} \nabla^{r-k} P_{m}\right) P_{n}\right\rangle \\
& =(-1)^{r} \sum_{k=0}^{r}\binom{r}{k}\left\langle\sigma, a_{2 r-k}\left(\Delta^{r} \nabla^{r-k} P_{m}\right) P_{n}\right\rangle \\
& =0,
\end{aligned}
$$

since $\operatorname{deg}\left(a_{2 r-k}\left[\Delta^{r} \nabla^{r-k} P_{m}\right]\right) \leqslant m$. Hence $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is a QOPS relative to τ.

Remark 3.1. For arbitrary constant $a(\neq 0)$ and b, we have that $\left\{P_{n}(a x+b)\right\}_{n=0}^{\infty}$ is also an OPS if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS. Hence, the condition (i) in Theorem 3.1 is equivalent to that $\left\{\Delta^{r} P_{n}(x)=\right.$ $\left.\nabla^{r} P_{n}(x+r)\right\}_{n=r}^{\infty}$ is a QOPS. In fact, we have the same results even though Δ or ∇ in Proposition 2.5 and in Theorem 3.1 are replaced by ∇ or Δ respectively.

Lemma 3.2 (cf. Lemma 3.4 in [14]). Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a monic OPS relative to a regular moment functional σ. For an integer $r \geqslant 1$, let $\left\{Q_{n}(x):=(1 /(P(n+r-1, r-1))) \nabla^{r-1} P_{n+r-1}(x)\right\}_{n=0}^{\infty} \quad$ and $\quad\left\{R_{n}(x):=\right.$ $\left.(1 /(n+1)) \nabla Q_{n+1}(x)\right\}_{n=0}^{\infty}$. If $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ is a QOPS relative to τ, then $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ satisfy the following recurrence relation:

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\beta_{n}\right) Q_{n}(x)-\gamma_{n} Q_{n-1}(x)-\sum_{j=0}^{n-2} \delta_{n}^{j} Q_{j}(x), \quad n \geqslant 1, \tag{3.3}
\end{equation*}
$$

where β_{n}, γ_{n}, and δ_{n}^{j} are real constants with $\delta_{1}^{0}=\delta_{1}^{-1}=0$ and $\delta_{n}^{1}=0, n \geqslant 1$.
Proof. Since $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ satisfy a three-term recurrence relation

$$
\begin{equation*}
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-c_{n} P_{n-1}(x), \quad n \geqslant 1, \tag{3.4}
\end{equation*}
$$

where b_{n} and c_{n} are real constants with $c_{n} \neq 0, n \geqslant 1$. Replacing n by $n+r-1$ in (3.4) and then acting ∇^{r-1} and ∇^{r} on both sides, we obtain for $n \geqslant 0$

$$
\begin{align*}
\nabla^{r-1} P_{n+r}(x)= & \left(x-r+1-b_{n+r-1}\right) \nabla^{r-1} P_{n+r-1}(x) \\
& -c_{n+r-1} \nabla^{r-1} P_{n+r-2}(x)+(r-1) \nabla^{r-2} P_{n+r-1}(x) \tag{3.5}
\end{align*}
$$

$$
\begin{align*}
\nabla^{r} P_{n+r}(x)= & \left(x-r-b_{n+r-1}\right) \nabla^{r} P_{n+r-1}(x) \\
& -c_{n+r-1} \nabla^{r} P_{n+r-2}(x)+r \nabla^{r-1} P_{n+r-1}(x) . \tag{3.6}
\end{align*}
$$

On the other hand, as a monic PS, $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ satisfy

$$
\begin{equation*}
R_{n+1}(x)=\left(x-\tilde{b}_{n}\right) R_{n}(x)-\tilde{c}_{n} R_{n-1}(x)-\sum_{j=0}^{n-2} \tilde{\delta}_{n}^{j} R_{j}(x), \quad n \geqslant 1, \tag{3.7}
\end{equation*}
$$

where $\tilde{b}_{n}, \tilde{c}_{n}$, and $\tilde{\delta}_{n}^{j}$ are real constants with $\tilde{\delta}_{1}^{0}=\tilde{\delta}_{1}^{-1}=0$ and $R_{-1}(x) \equiv 0$. Applying τ to (3.7) and using the quasi-orthogonality of $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ relative to τ, we obtain $\widetilde{\delta}_{n}^{0}=0, n \geqslant 2$ so that (3.7) reduces to

$$
\begin{equation*}
R_{n+1}(x)=\left(x-\tilde{b}_{n}\right) R_{n}(x)-\tilde{c}_{n} R_{n-1}(x)-\sum_{j=1}^{n-2} \tilde{\delta}_{n}^{j} R_{j}(x), \quad n \geqslant 2 \quad\left(\tilde{\delta}_{2}^{1}=0\right) \tag{3.8}
\end{equation*}
$$

From (3.8) with n replaced by $n+r-1$ and (3.6), we obtain

$$
\begin{aligned}
r \nabla^{r-1} P_{n+r-1}= & {\left[\frac{r}{n} x+r+b_{n+r-1}-\tilde{b}_{n-1} \frac{n+r}{n}\right] \nabla^{r} P_{n+r-1} } \\
& +\left[c_{n+r-1}-\tilde{c}_{n-1} \frac{(n+r)(n+r-1)}{n(n-1)}\right] \nabla^{r} P_{n+r-1} \\
& -\sum_{j=1}^{n-3} \tilde{\delta}_{n-1}^{j} \frac{(n+1)_{r}}{(j+1)_{r}} \nabla^{r} P_{j+r}, \\
= & \nabla\left[\left(\frac{r}{n} x+r+b_{n+r-1}-\tilde{b}_{n-1} \frac{n+r}{n}\right) \nabla^{r-1} P_{n+r-1}\right] \\
& +\frac{r}{n} \nabla^{r} P_{n+r-1}-\frac{r}{n} \nabla^{r-1} P_{n+r-1} \\
& +\left[c_{n+r-1}-\tilde{c}_{n-1} \frac{(n+r)(n+r-1)}{n(n-1)}\right] \nabla^{r} P_{n+r-2} \\
& -\sum_{j=1}^{n-3} \tilde{\delta}_{n-1}^{j} \frac{(n+1)_{r}}{(j+1)_{r}} \nabla^{r} P_{j+r}, \quad n \geqslant 3 .
\end{aligned}
$$

Since, for any polynomials $f(x)$ and $g(x), \nabla g(x)=\nabla f(x)$ if and only if $f(x)=g(x)+c$ with arbitrary constant c, we have

$$
\begin{align*}
\nabla^{r-2} P_{n+r-1}= & \left(\frac{x}{n+1}+\frac{n b_{n+r-1}}{r(n+1)}-\frac{(n+r) \tilde{b}_{n-1}}{r(n+1)}-\frac{n+r}{n+1}\right) \nabla^{r-1} P_{n+r-1} \\
& +\left(\frac{n c_{n+r-1}}{r(n+1)}-\frac{(n+r)(n+r-1) \tilde{c}_{n-1}}{r(n-1)(n+1)}\right) \nabla^{r-1} P_{n+r-2} \\
& -\sum_{j=1}^{n-3} \tilde{\delta}_{n-1}^{j} \frac{n}{r(n+1)} \frac{(n+1)_{r}}{(j+1)_{r}} \nabla^{r-1} P_{j+r}+d_{n} \tag{3.9}
\end{align*}
$$

where d_{n} is a constant. Substituting (3.9) into (3.5) yields

$$
\begin{aligned}
\nabla^{r-1} P_{n+r}= & \left(\frac{-(n+r) c_{n+r-1}}{(n+1) r}-\frac{(r-1)(n+r)(n+r-1) \tilde{c}_{n-1}}{r(n-1)(n+1)}\right) \\
& \times \nabla^{r-1} P_{n+r-2}+\frac{n+r}{r(n+1)} \\
& \times\left(r x-b_{n+r-1}-(r-1) \tilde{b}_{n-1}+\frac{r(1-r)(n+r+1)}{n+r}\right) \\
& \times \nabla^{r-1} P_{n+r-1}-\sum_{j=1}^{n-3} \frac{(r-1) n}{r(n+1)} \frac{(n+1)_{r}}{(j+1)_{r}} \\
& \times \nabla^{r-1} P_{j+r}+(r-1) d_{n}, \quad n \geqslant 3 .
\end{aligned}
$$

This last equation can be rewritten into the equation (3.3) by the definition of $Q_{n}(x)$ for $n \geqslant 3$. The equation (3.3) for $n=1$ or 2 is trivial.

Lemma 3.3 (cf. Lemma 3.5 in [14]). Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty},\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, and $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ be the same as in Lemma 3.2. Let $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$, and $\left\{w_{n}\right\}_{n=0}^{\infty}$ be the dual sequences of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}, \quad\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, and $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ respectively. If $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ is a QOPS, then
(i) there are $r+1$ polynomials $\left\{a_{k}(x)\right\}_{r}^{2 r}$ with $a_{2 r}(x) \not \equiv 0, \operatorname{deg}\left(a_{k}\right) \leqslant k$, $k=r, \ldots, 2 r$, and

$$
\begin{equation*}
\Delta^{2 r-k} w_{0}=a_{k}(x) u_{0}, \quad k=r, \ldots, 2 r \tag{3.10}
\end{equation*}
$$

and
(ii) there are r polynomials $\left\{h_{k}(x)\right\}_{r+1}^{2 r}$ with $h_{2 r}(x) \not \equiv 0, \operatorname{deg}\left(h_{k}\right) \leqslant k$, $k=r+1, \ldots, 2 r$, and

$$
\begin{equation*}
\Delta^{2 r-k} v_{0}=h_{k}(x) u_{0}, \quad k=r+1, \ldots, 2 r . \tag{3.11}
\end{equation*}
$$

Moreover, we also have $\operatorname{deg}\left(a_{r}\right)=r$ and $\operatorname{deg}\left(h_{r+1}\right)=r-1$.

Proof. Assume that $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ is a QOPS. Then w_{0} is an orthogonalizing moment functional of $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$. Hence we have (i) from the equivalence of the statements (i) and (iii) in Theorem 3.1.

By Lemma 3.2, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ satisfy the recurrence relation (3.3). Applying v_{1} to (3.3), we obtain $\left\langle x v_{1}, Q_{n}\right\rangle=0, n \geqslant 3$ so that by Lemma 2.2

$$
x v_{1}=e_{0} v_{0}+e_{1} v_{1}+e_{2} v_{2},
$$

where $e_{j}=\left\langle x v_{1}, Q_{j}\right\rangle, \quad j=0,1,2$. Since $e_{0}=\left\langle x v_{1}, Q_{0}\right\rangle=\left\langle v_{1}, x\right\rangle=$ $\left\langle v_{1}, Q_{1}\right\rangle=1$, we have by Lemma 2.3

$$
\begin{equation*}
v_{0}=\left(-x+e_{1}\right) \Delta w_{0}+\frac{e_{2}}{2} \Delta w_{1} . \tag{3.12}
\end{equation*}
$$

On the other hand, applying w_{0} to (3.8), we obtain $\left\langle x w_{0}, R_{n}\right\rangle=0, n \geqslant 2$ so that by Lemma 2.2

$$
x w_{0}=c_{0} w_{0}+c_{1} w_{1},
$$

where $c_{j}=\left\langle x w_{0}, R_{j}\right\rangle, j=0,1$. If $c_{1}=0$, then $\left(x-c_{0}\right) w_{0}=\left(x-c_{0}\right) a_{2 r}(x)$ $u_{0}=0$ by (3.10). It is a contradiction since u_{0} is regular and $a_{2 r}(x) \not \equiv 0$. Hence, $c_{1} \neq 0$ and

$$
\begin{equation*}
w_{1}=\frac{x-c_{0}}{c_{1}} w_{0} . \tag{3.13}
\end{equation*}
$$

Substituting (3.13) into (3.12), we obtain

$$
\begin{equation*}
v_{0}=\pi_{2 r}(x) u_{0} \tag{3.14}
\end{equation*}
$$

where $\pi_{2 r}(x)$ is a polynomial of degree $\leqslant 2 r$. Acting Δ on (3.14) successively, we obtain (3.11) from (3.10).

Finally we have

$$
\begin{aligned}
\left\langle\Delta^{r} w_{0}, P_{n}\right\rangle & =(-1)^{r}\left\langle w_{0}, \nabla^{r} P_{n}\right\rangle \\
& = \begin{cases}0 & \text { if } n \neq r \\
(-1)^{r}\left\langle w_{0}, P(n, r) R_{n-r}\right\rangle & \text { if } n=r\end{cases}
\end{aligned}
$$

so that $a_{r}(x) u_{0}=\Delta^{r} w_{0}=(-1)^{r} r!u_{r}=(-1)^{r} r!C_{r} P_{r}(x) u_{0}$ by Lemma 2.4. Hence $\operatorname{deg}\left(a_{r}\right)=r$.

Similarly we have $h_{r+1}(x) u_{0}=\Delta^{r-1} v_{0}=(-1)^{r-1}(r-1)!C_{r-1} P_{r-1}(x) u_{0}$ so that $\operatorname{deg}\left(h_{r+1}\right)=r-1$.

Now, we are ready to give our main result which is the discrete version of Hahn's theorem [8].

Theorem 3.4. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be an OPS relative to a regular moment functional σ and $r \geqslant 1$ an integer. Then any one of the equivalent statements in Theorem 3.1 is also equivalent to
(iv) $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS.

Proof. Assume that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS. Then, $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is also a discrete classical OPS for any integer $r \geqslant 1$. Hence, the statement (i) in Theorem 3.1 holds.

Conversely, we assume that the statement (i) in Theorem 3.1 holds. If $r=1,\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS by the Proposition 2.5. Hence we assume $r \geqslant 2$. Then, by induction, it suffices to show that $\left\{\nabla^{r-1} P_{n}(x)\right\}_{r-1}^{\infty}$ is a QOPS or equivalently there exist $r-1$ polynomials $\left\{g_{k}(x)\right\}_{r-1}^{2(r-1)}$ with $g_{2(r-1)}(x) \neq 0, \operatorname{deg}\left(g_{k}\right) \leqslant k, r-1 \leqslant k \leqslant 2(r-1)$ and

$$
\Delta\left(g_{k} \sigma\right)=g_{k-1} \sigma, \quad k=r, r+1, \ldots, 2 r-2 .
$$

We may assume $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a monic PS and let $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, $\left\{R_{n}(x)\right\}_{n=0}^{\infty}, \quad\left\{u_{n}\right\}_{n=0}^{\infty}, \quad\left\{v_{n}\right\}_{n=0}^{\infty}$, and $\left\{w_{n}\right\}_{n=0}^{\infty}$ be the same as in Lemma 3.3. Since $\left\{\nabla^{r} P_{n}(x)\right\}_{n=r}^{\infty}$ is a QOPS, by Lemma 3.3, we have polynomials $\left\{a_{k}(x)\right\}_{r}^{2 r}$ and $\left\{h_{k}(x)\right\}_{r+1}^{2 r}$ satisfying (3.10) and (3.11). Hence, the moment functional u_{0} satisfies

$$
\begin{array}{ll}
\Delta\left(a_{k} u_{0}\right)=a_{k-1} u_{0}, & k=r+1, \ldots, 2 r, \\
\Delta\left(h_{k} u_{0}\right)=h_{k-1} u_{0}, & k=r+2, \ldots, 2 r . \tag{3.16}
\end{array}
$$

Now, let $s(\geqslant 0)$ be the class number of the discrete semi-classical moment functional u_{0} and $(\alpha(x), \beta(x)) \neq(0,0)$ a pair of polynomials satisfying

$$
\Delta\left(\alpha u_{0}\right)=\beta u_{0} \quad \text { with } \quad s=\max (\operatorname{deg}(\alpha)-2, \operatorname{deg}(\beta)-1) .
$$

Then we have from Proposition 2.7

$$
\begin{array}{ll}
a_{k}(x)=\tilde{a}_{k}(x) \alpha(x), & k=r+1, \ldots, 2 r, \\
h_{k}(x)=\tilde{h}_{k}(x) \alpha(x), & k=r+2, \ldots, 2 r, \tag{3.18}
\end{array}
$$

where $\tilde{a}_{k}(x)$ and $\tilde{h}_{k}(x)$ are polynomials. Hence we have from (3.15), (3.16), (3.17), and (3.18)

$$
\begin{array}{ll}
\Delta \tilde{a}_{k} \alpha+\tilde{a}_{k}(x+1) \beta=a_{k-1}, & k=r+1, \ldots, 2 r ; \\
\Delta \tilde{h}_{k} \alpha+\tilde{h}_{k}(x+1) \beta=h_{k-1}, & k=r+2, \ldots, 2 r . \tag{3.20}
\end{array}
$$

From now on, we divide the proof into two cases: $s=\operatorname{deg}(\alpha)-2 \geqslant$ $\operatorname{deg}(\beta)-1$ and $s=\operatorname{deg}(\beta)-1>\operatorname{deg}(\alpha)-2$.

Case I. $s=\operatorname{deg}(\alpha)-2 \geqslant \operatorname{deg}(\beta)-1$. Counting degrees on both sides of the equation (3.19), we have $\operatorname{deg}\left(a_{k-1}\right)+1 \leqslant \operatorname{deg}\left(a_{k}\right), r+1 \leqslant k \leqslant 2 r$ since $\operatorname{deg}(\alpha) \geqslant \operatorname{deg}(\beta)+1$. Hence we have

$$
\operatorname{deg}\left(a_{k}\right)=k, \quad k=r, r+1, \ldots, 2 r
$$

since $\operatorname{deg}\left(a_{r}\right)=r$ and $\operatorname{deg}\left(a_{k}\right) \leqslant k, k=r, \ldots, 2 r$. Similarly, counting degrees on both sides of the equation (3.20), we have $\operatorname{deg}\left(h_{k-1}\right)+1 \leqslant \operatorname{deg}\left(h_{k}\right)$, $r+2 \leqslant k \leqslant 2 r$. We now claim that

$$
\begin{equation*}
\operatorname{deg}\left(h_{k-1}\right)+1=\operatorname{deg}\left(h_{k}\right), \quad k=r+2, \ldots, 2 r . \tag{3.21}
\end{equation*}
$$

If not, let j be the first integer $\geqslant r+2$ such that $\operatorname{deg}\left(h_{j-1}\right)+1<\operatorname{deg}\left(h_{j}\right)$. Then, $\quad \operatorname{deg}\left(h_{k}\right)=k-2, \quad k=r+1, \ldots, j-1$ and $j-2<\operatorname{deg}\left(h_{j}\right) \leqslant j$ since $\operatorname{deg}\left(h_{r+1}\right)=r-1$. Since $r+2 \leqslant j \leqslant 2 r, \operatorname{deg}\left(h_{j}\right)=m=\operatorname{deg}\left(a_{m}\right)$ for some $m=r+1, \ldots, 2 r$. Let $A(\neq 0)$ and $B(\neq 0)$ be the leading coefficients of $a_{m}(x)$ and $h_{j}(x)$ respectively. Multiplying the equation (3.19) for $k=m$ by B and the equation (3.20) for $k=j$ by A and subtracting these two equations, we obtain

$$
\begin{align*}
& \left(B \Delta \tilde{a}_{m}-A \Delta \tilde{h}_{j}\right) \alpha+\left(B \tilde{a}_{m}(x+1)-A \tilde{h}_{j}(x+1)\right) \beta \\
& \quad=B a_{m-1}-A h_{j-1} . \tag{3.22}
\end{align*}
$$

We then have $\operatorname{deg}\left(B a_{m-1}-A h_{j-1}\right)=m-1$ since $\operatorname{deg}\left(a_{m-1}\right)=m-1>$ $j-3=\operatorname{deg}\left(h_{j-1}\right)$. However, the degree of the left hand side of the equation (3.22) is at most $m-2$ since $\operatorname{deg}\left(B a_{m}-A h_{j}\right) \leqslant m-1$ and $\operatorname{deg}(\beta) \leqslant \operatorname{deg}(\alpha)-1$. It is a contradiction so that we have (3.21).

Since $\operatorname{deg}\left(h_{r+1}\right)=r-1$, we have from (3.21)

$$
\begin{equation*}
\operatorname{deg}\left(h_{k}\right)=k-2, \quad k=r+1, \ldots, 2 r . \tag{3.23}
\end{equation*}
$$

If we set $g_{k}(x)=h_{k+2}(x), k=r-1, \ldots, 2(r-1)$, then $\left\{g_{k}\right\}_{r-1}^{2(r-1)}$ satisfy the condition (ii) in Theorem 3.1 with r replaced by $r-1$ and σ replaced by u_{0} by (3.16) and (3.23). Hence, by Theorem 3.1 and induction hypothesis, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS relative to u_{0}.

Case II. $s=\operatorname{deg}(\beta)-1>\operatorname{deg}(\alpha)-2$. Counting degrees on both sides of the equation (3.19), we have

$$
\operatorname{deg}\left(a_{k}\right)=\operatorname{deg}\left(a_{k-1}\right)+\operatorname{deg}(\alpha)-\operatorname{deg}(\beta), \quad k=r+1, \ldots, 2 r
$$

so that

$$
\begin{align*}
\operatorname{deg}\left(a_{k}\right) & =\operatorname{deg}\left(a_{r}\right)+(k-r)(\operatorname{deg}(\alpha)-\operatorname{deg}(\beta)) \\
& =r+(k-r)(\operatorname{deg}(\alpha)-\operatorname{deg}(\beta)), \quad k=r+1, \ldots, 2 r . \tag{3.24}
\end{align*}
$$

In particular, we have for $k=2 r$ in (3.24) $\operatorname{deg}\left(a_{2 r}\right)=r(\operatorname{deg}(\alpha)-s)$. Since $\operatorname{deg}\left(a_{2 r}\right) \geqslant \operatorname{deg}(\alpha) \geqslant 0, s \leqslant \operatorname{deg}(\alpha)<s+2$ so that $\operatorname{deg}(\alpha)$ is either s or $s+1$. If $\operatorname{deg}(\alpha)=s$, then $s=0$ and so $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS. If $\operatorname{deg}(\alpha)=s+1$, then we have by counting degrees on both sides of the equation (3.20)

$$
\operatorname{deg}\left(h_{k}\right)=\operatorname{deg}\left(h_{k-1}\right), \quad k=r+2, \ldots, 2 r
$$

so that

$$
\begin{equation*}
\operatorname{deg}\left(h_{k}\right)=r-1, \quad k=r+1, \ldots, 2 r . \tag{3.25}
\end{equation*}
$$

If we set $g_{k}(x)=h_{k+2}(x), k=r-1, \ldots, 2(r-1)$, then $\left\{g_{k}(x)\right\}_{r-1}^{2(r-1)}$ satisfy the condition (ii) in Theorem 3.1 with r replaced by $r-1$ and σ replaced by u_{0} by (3.16) and (3.25). Hence, by Theorem 3.1 and induction hypothesis, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a discrete classical OPS relative to u_{0}.

ACKNOWLEDGMENTS

This work is partially supported by the Center for Applied Math. at KAIST and KOSEF (95-0701-02-01-3). All authors thank the referees for their very careful reading of the manuscript and many valuable comments.

REFERENCES

1. W. A. Al-Salam, Characterization theorems for orthogonal polynomials, in "Orthogonal Polynomials: Theory and Practice" (P. Nevai, Ed.), NATO ASI Series, Vol. 294, pp. 1-24, Kluwer, Dordrecht, 1990.
2. W. A. Al-Salam and T. S. Chihara, Another characterization of classical orthogonal polynomials, SIAM J. Math. Anal. 3 (1972), 65-70.
3. F. F. Beale, On a certain class of orthogonal polynomials, Ann. Math. Statist. 12 (1941), 97-103.
4. S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736.
5. T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon \& Breach, New York, 1978.
6. A. G. García, F. Marcellán, and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comp. Appl. Math. 57, Nos. 1/2 (1995), 147-162.
7. W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935), 634-638.
8. W. Hahn, Über höhere Ableitungen von Orthogonalpolynomen, Math. Z. 43 (1937), 101.
9. W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr. 2 (1949), 4-34.
10. E. H. Hildebrandt, Systems of polynomials connected with the Charlier expansion and the Pearson differential and difference equations, Ann. Math. Statist. 2 (1931), 379-439.
11. H. L. Krall, On derivatives of orthogonal polynomials, Bull. Amer. Math. Soc. 42 (1936), 423-428.
12. H. L. Krall, On derivatives of orthogonal polynomials. II, Bull. Amer. Math. Soc. 47 (1941), 261-264.
13. K. H. Kwon, D. W. Lee, and S. B. Park, Discrete classical orthogonal polynomials, J. Differ. Equations Appl., to appear.
14. K. H. Kwon, L. L. Littlejohn, and B. H. Yoo, New characterizations of classical orthogonal polynomials, Indag. Math. N.S. 7(2) (1996), 199-213.
15. O. E. Lancaster, Orthogonal polynomials defined by difference equations, Amer. J. Math. 63 (1941), 185-207.
16. P. Lesky, Über Polynomsysteme die Sturm-Liouvilleschen Differenzengleichungen genügen, Math. Z. 78 (1962), 439-445.
17. P. Maroni, Prolégomènes à l'étude des polynômes orthogonaux semi-classiques, Ann. Mat. Pura Appl. 149, No. 4 (1987), 165-184.
18. P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comp. Appl. Math. 48, Nos. 1/2 (1993), 133-155.
19. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, "Classical Orthogonal Polynomials of a Discrete Variable," Springer-Verlag, Berlin, 1991.
20. A. Ronveaux, Discrete semi-classical orthogonal polynomials: Generalized Meixner, J. Approx. Theory 46 (1986), 403-407.
21. N. J. Sonine, Über die angenäherte Berechnung der bestimmten Integrate und über die dabei vorkommenden ganzen Funktionen, Warsaw Univ. Izv. 18 (1887), 1-76 [In Russian]; summary in Jbuch Fortschritte Math. 19, 282.
22. M. S. Webster, Orthogonal polynomials with orthogonal derivatives, Bull. Amer. Math. Soc. 44 (1938), 880-888.
23. M. Weber and A. Erdélyi, On the finite difference analogue of Rodrigues' formula, Amer. Math. Monthly 59 (1952), 163-168.
